The uniqueness of the inverse obstacle scattering problem with transmission boundary conditions
نویسندگان
چکیده
منابع مشابه
Uniqueness of the Solution to Inverse Obstacle Scattering Problem
It is proved that the scattering amplitude known at a fixed frequency, a fixed direction of the incident plane wave and all directions of the scattered wave in a solid angle, however small, determine uniquely the shape of a strictly convex obstacle with a smooth but not analytic boundary on which the Dirichlet boundary condition is assumed.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولInverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions
In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...
متن کاملUniqueness of the Inverse Conductive Scattering Problem
1 . I N T R O D U C T I O N During the last two decades or so, inverse scattering problems for the Helmholtz equation have enjoyed a remarkable degree of popularity, both in pure and applied contexts (see the monograph [1] and the references therein). One of the most important theoretical considerations in inverse scattering problems is uniqueness. Different approaches have been proposed [2-10]...
متن کاملInverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions
In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining a new Hilbert space and using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1998
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(98)00129-1